Stream Gaging Workshop February 2021

Seth Makepeace, Confederated Salish and Kootenai Tribes Hydrologist

Overview

- Introduction Team Effort / Many People / Many Years
- Setting Physical and Social
- Big Picture Why CSKT has invested in Water Measurement
- Water Measurement Activities 1906 Present
- Where is the Program headed from here

GLACIER NATIONAL PARK Lake Koocanusa Libby Kalispell Hungry Horse Reservoir Cabinet Gorge Reservoi Noxon Reservoir Flathead Indian Reservation within context of Flathead Basin

Flathead Watershed and Flathead Indian Reservation

Flathead trans-boundary watershed: British Columbia, Montana, Flathead Indian Reservation

Lower 73 miles of Flathead River flow on Flathead Indian Reservation

8,975 square mile drainage area upstream of confluence with Clark Fork River

Land Ownership Status

Checkerboard Reservation (2019 land status)

Flathead Reservation 1.317 million acres

Tribal ownership 842,217 acres 64% of Reservation

Fee ownership 415,440 acres 31.5% of Reservation

State of Montana ownership 36,942 acres

2.8% of Reservation

Federal ownership 22,983 acres 1.7% of Reservation

Highly diverse Reservation – precipitation ranges from ~ 100 inches/year to ~ 10 inches/year ~ 150,000 total irrigated acres > 200,000 commercial forest acres

Water Measurement over Time: USGS Program 1906 - 1918

<u>Objective</u> - Measure several natural flow locations to characterize water availability for developing federal irrigation project

Data has substantial value

- Quality-assured with metadata about locations
- Data coincident with 1908 flood of record
- Extends window for trends analysis

<u>Value added information</u> – comparative hydraulic geometry - used to inform recent restoration designs

	Area		Width		Mean depth		Velocity		Width/depth ratio	
Discharge	Historic USGS	CSKT	Historic USGS	CSKT	Historic USGS	CSKT	Historic USGS	CSKT	Historic USGS	CSKT
100 cfs	59.2 ft ²	50.7 ft ²	45.1 ft	58.1 ft	1.01 ft	0.92 ft	1.64 fps	1.72 fps	45	63
500 cfs	136.7 ft ²	133.2 ft ²	47.5 ft	73.9 ft	2.6 ft	1.8 ft	3.97 fps	4.04 fps	18	41
1000 cfs	196.1 ft ²	201.9 ft ²	48.6 ft	82 ft	3.85 ft	2.38 ft	5.81 fps	5.84 fps	13	34

Jocko River gage location 1907

Water Measurement over Time: Federal Irrigation Project 1940's – 1960's

Objectives - Measure natural flow locations for water supply forecasting and reservoir management; Measure canals for irrigation operations; Measure on-farm use for irrigation water allocation

Issues – Paper records, very difficult to track records from field to office work-up
Difficult to track quality assurance or review process
Substantial challenge to restore paper record into digital format

Legacy irrigation measurement infrastructure

Water Measurement over Time: CSKT 1982 - 1992

Big Picture Objectives -

- Develop organizational learning process / capabilities
- Tribal management of Tribal resources on Reservation
- Initiate technical work for water rights adjudication

Water Measurement over Time - CSKT <u>1982 – 1992</u>

<u>Data Management – Database</u>

Early on (1983), database programmed in Fortran 77

- Unique location identifiers carries through to today
- Rating curve tool based on defining straight line segments and applying least squares linear regression to each segment
- Rating tables and gage heights populate rated discharge fields
- Data integrity has been maintained through 2 database migrations

<u>Data Management – "Metadata"</u>

- Station Description prepared upon establishment of station and with changes to equipment, location, ...
- Station Analysis Annual summary of station conditions. Shifts/Datum corrections, ...
- Rating Curves
- Discharge Notes and USGS 207 Forms
- Level Summaries
- Legacy Paper Record was recently scanned and is maintained in searchable
 Open Text Database

Water Measurement over Time - CSKT 1992 - 2014

Transition from Instantaneous Measurement to Continuous Recorders At peak 85 recorder locations – 45 canal locations, 40 stream locations

Shift in Technical Objectives toward Water Management from Water Resources Evaluation

- Greater compliance with court-mandated instream flows
- Improved irrigation water management
- Accelerate development of information for Tribes' water rights effort
- Calibration inputs for surface water allocation models and groundwater flow models

Water Measurement over Time - CSKT 1992 - 2014

2000 - Migrate Fortran database to MS SQL database with web interface

- At this point storing data for ~ 275 unique measurement locations, and over 850 individual ratings
- Preserve miscellaneous discharge measurements as locations
- Retain regression logic for rating table utilities
- Hot folders to pick up logger data

Rating table legacy database. Same rating in Aquarius Time Series

Sidebar – Some Data Applications

Flow Duration Curve — What should we base
River Restoration Design on — Existing or Natural Flows
Existing Flow: Bankfull discharge occurs ~ 7 days/year
Natural Flow: Bankfull discharge occurs ~ 31 days/year

Surface Water – Groundwater Interactions based on Gage Mass Balance, validated with Synoptic Discharge Measurements Fisheries Habitat, Model Calibration tool, ...

Water Measurement over Time - CSKT 2014 - present

- Transition to Telemetry, requiring upgrade to field equipment
- Presently 82 real-time stations
- Natural streamflow, regulated streamflow, canal headworks, return flow/water quality stations, reservoirs
- 100% transition to acoustic doppler for discharge measurement

Added Technical Objective -

- Measurement to support implementation of Water Rights Compact
 - Consumptive and non-consumptive water rights described as Wet, Normal, and Dry year flows and volumes
 - Allows for Adaptive Management and some level of climate change resiliency
 - Water measurement key input for Adaptive Management and between-year and within-year water allocation

Simple Schematic of Instream Flow (non-consumptive) / Irrigation (consumptive) Water Right Implementation

Aquarius Time Series Deployment 2016

Basic CSKT Steps for DB Migration / Deployment

- Vendor selection, including test deployments
- Structured Migration
- Validation of migration
- Learning and use of database, including updating rating curves
- AquariusWeb deployment
- Internal documentation and SOP's
- WebPortal enhancements to support user needs (anticipated)

CSKT Adaptation to Aquarius Time Series/Telemetry

- <u>Created new Job Position Data Management Hydrologist</u> responsible for data flows from DCP to Web; In-House Training; required to maintain a set of gage locations
- Program staff traditional skills are weighted towards field operations growing our data manipulation / data management skills
 - Need to do this and maintain field expertise
- <u>Data Management / Review / QA-QC</u> has been very robust, but very traditional and paper intensive – maintain robust QA-QC, but work within framework of AQ Time Series
- Program has traditionally worked records at end of season. With Telemetry and AQ Time Series tools, need to maintain and grade records in near real-time
 - Due to highly contentious nature of water on Reservation, need to allow public access to data, while maintaining high quality standards for data publishing

Summary

By the Numbers

- Operate 80+ gages, approximately 50% larger canals
- Staffing One Hydrologist (works ~ 50% on measurement tasks), Data Management Hydrologist, Chief of Field Operations, 4 Hydrographers
 - Staff operate about 15-18 gages, several other duties
- Found creative resources to fund launch of AQTS and telemetry network not in regular budget
- Operate gage program on ~ 500k per year, Tribal funds, some federal funds, and now State funds
- Over \$6,000 per year to operate a gage, canals lower cost
- Costs do not reflect start up of AQTS and electronics, just O&M
- Cost per year will grow. Program likely to shift to CSKT settlement

Program Directions

- Hydraulic structures at some canals
- Reservoir stage 3 done, 10 more to go
- Staff mentoring and transition
- Take AQTS to SaaS (cloud)
- Improve Web interface
- Support settlement implementation
- Keep staff and program vibrant for next generation

Public Access https://www.csktwaterdata.org/AQWebPortal/

Questions

French Curves and Eraser Shavings to mouse clicks

